Serene Tai Wipf Group Current literature 17 Feb 2018

1

Bo Wang, Heng Yi, Hang Zhang, Tong Sun, Yan Zhang, Jianbo Wang *J. Org. Chem.*, **2018**, *83*, 1026-1032

Ru(II)-Catalyzed Cross-Coupling of Cyclopropenes with Diazo Compounds: Formation of Olefins from Two Different Carbene Precursors

Metal Carbenoid

H_EWG

[M]

Decomposition of diazo compounds is one of the more common ways to generate carbene due to functional groups versatility

 $H \underset{N_2}{\longleftarrow} EWG \xrightarrow{h @ or @ or [M]} H \underset{\cdots}{\longleftarrow} EWG \underset{+}{\longleftarrow} N_2$

Classification of metal carbenoids

Metal Carbenoid Reactions

Competing side reaction: carbene dimerization!

Useful Synthetic Tool: Chemoselective Carbene Dimerization

.CO₂Me

71% (E:Z >20:1)

Intramolecular

Intermolecular

Doyle, *Org. Lett.*, **2000**, *2*, 1777-1779 Similar work: Che¹, Ru(II)-porphyrin cat. *Z*-selective

Davies, *Angew. Chem. Int. Ed.* **2011**, *50*, 2544 –2548 Similar work: Sun^{2,3}, Au(I) and Cu(II) cat. *Z*-selective

Intermolecular: different carbene precursors

 $\begin{array}{c} CO_2Me \\ + \\ 2 \end{array} \begin{array}{c} H \\ N_2 \end{array} \begin{array}{c} CO_2Me \\ Rh_2(OPiv)_4 \\ \hline CH_2Cl_2, -78 \ ^{\circ}C - rt \end{array}$

- 1. Org. Lett., 2004, 6, 1621-1623
- 2. Angew. Chem. Int. Ed. 2014, 53, 11070-11074
- 3. Org. Lett., 2015, 17, 4244-4247
- 4. Angew. Chem. Int. Ed. 2016, 55, 273-277

Barluenga, *Angew. Chem. Int. Ed.* **2001**, *40*, 3392 –3394 Similar work: Wang⁴, difluorocarbene with diazo compound

Cyclopropene: Vinyl Metal Carbene Precursor

Optimization of Reaction Conditions

				<i>n</i> -C ₆ H ₁₃	-С ₆ Н ₁₃
<i>n</i> -C ₆ H ₁₃	∑ ^{<i>n</i>-C₆H₁₃ -}	H Ph	$CO_2 Me \frac{\text{cat. (5 mol\%)}}{\text{solvent, 60 °C, 4 l}}$	n Ph	
1a , 0	.1 mmol	2a , 0.1	mmol	3a	
entry	solvent	1a/2a	cat.	yield ^a (%)	E/Z^{b}
1	MeCN	1:1	CuI	10	nd ^c
2	MeCN	1:1	AuCl	19	nd
3^d	MeCN	1:1	AuPPh ₃ Cl	21	nd
4	PhMe	1:1	$[Rh(cod)Cl]_2$	12	nd
5	PhMe	1:1	$[RuCl_2(p-cymene)]_2$	43	3:1
6	PhMe	1:1	$Ru(PPh_3)_3Cl_2$	19	4:1
7	PhMe	1:1	CpRu(PPh ₃) ₂ Cl	21	10:1
8	PhMe	1:1	$[RuCl_2(benzene)]_2$	37	2.5:1
9	PhMe	1:1	[Cp*Ru(cod)Cl]	72	3:1
10^e	THF	1.3:1	[Cp*Ru(cod)Cl]	98 (88 ^f)	5:1
11^g	THF	1.3:1	none	0	

^{*a*}NMR yield. ^{*b*}Determined by ¹H NMR (400 MHz). ^{*c*}nd: not determined. ^{*d*}5 mol % of AgOTf was used. ^{*e*}2.5 mol % of catalyst was used. ^{*f*}Isolated yield. ^{*g*}The substrates remained unchanged.

Scope of Cyclopropenes

^{*a*}Reaction conditions: **1**a–**f** (0.26 mmol), **2**a (0.20 mmol), and [Cp*Ru(cod)Cl] (2.5 mol %) in THF (1.0 mL) at 60 °C. All of the yields refer to the isolated products by column chromatography. The ratio of E/Z was determined by ¹H NMR (400 MHz). ^{*b*}The reaction time was 12 h, and 1.5 equiv of cyclopropene was used.

Scope of Diazo Precursors

8

Proposed Reaction Pathways

Which substrate reacts with Ru cat. first?

Competition Experiments of the Diazo Compounds

Diazo compound bearing EDG is more reactive = diazo compound likely functions as **nucleophile**

Control Experiments

Effects of Alkenyl Substituents

Proposed Catalytic Cycle

Conclusions

- First report of cyclopropene as metal-catalyzed carbene dimerization precursor
- Highly selective substrates homocoupling not observed
- New addition to the synthetic toolkit to construct C=C bond

Future extensions:

- Improve E/Z selectivity & stereoselectivity
- EWG substituents on cyclopropene
- Narrow substrate scope limit utility of method